Fractal Drum, Inverse Spectral Problems for Elliptic Operators and a Partial Resolution of the Weyl-Berry Conjecture Author(s):

نویسندگان

  • Michel L. Lapidus
  • MICHEL L. LAPIDUS
چکیده

Let QJ be a bounded open set of RDn (n > 1) with "fractal" boundary F. We extend Hermann Weyl's classical theorem by establishing a precise remainder estimate for the asymptotics of the eigenvalues of positive elliptic operators of order 2m (m > 1) on Q. We consider both Dirichlet and Neumann boundary conditions. Our estimate-which is expressed in terms of the Minkowski rather than the Hausdorff dimension of F-specifies and partially solves the Weyl-Berry conjecture for the eigenvalues of the Laplacian. Berry's conjecture-ivhich extends to "fractals" Weyl's conjecture-is closely related to Kac's question "Can one hear the shape of a drum?"; further, it has significant physical applications, for example to the scattering of waves by "fractal" surfaces or the study of porous media. We also deduce from our results new remainder estimates for the asymptotics of the associated "partition function" (or trace of the heat semigroup). In addition, we provide examples showing that our remainder estimates are sharp in every possible "fractal" (i.e., Minkowski) dimension. The techniques used in this paper belong to the theory of partial differential equations, the calculus of variations, approximation theory and-to a lesser extent-geometric measure theory. An interesting aspect of this work is that it establishes new connections between spectral and "fractal" geometry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Riemann Zeta-function and the One-dimensional Weyl-berry Conjecture for Fractal Drums

Based on his earlier work on the vibrations of 'drums with fractal boundary', the first author has refined M. V. Berry's conjecture that extended from the 'smooth' to the 'fractal' case H. Weyl's conjecture for the asymptotics of the eigenvalues of the Laplacian on a bounded open subset of W (see [16]). We solve here in the one-dimensional case (that is, when n = 1) this 'modified Weyl-Berry co...

متن کامل

On‎ ‎inverse problem for singular Sturm-Liouville operator with‎ ‎discontinuity conditions

‎In this study‎, ‎properties of spectral characteristic are investigated for‎ ‎singular Sturm-Liouville operators in the case where an eigen‎ ‎parameter not only appears in the differential equation but is‎ ‎also linearly contained in the jump conditions‎. ‎Also Weyl function‎ ‎for considering operator has been defined and the theorems which‎ ‎related to uniqueness of solution of inverse proble...

متن کامل

Inverse Sturm--Liouville problems using three spectra with finite number of transmissions and parameter dependent conditions

‎In this manuscript‎, ‎we study various by uniqueness results for inverse spectral problems of Sturm--Liouville operators using three spectrum with a finite number of discontinuities at interior points which we impose the usual transmission conditions‎. ‎We consider both the cases of classical Robin and eigenparameter dependent boundary conditions.

متن کامل

A Uniqueness Theorem of the Solution of an Inverse Spectral Problem

This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.

متن کامل

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008